
On Designing 2D Discrete Workspaces
to Sort or Classify Polyominoes

Phillip Keldenich1, Sheryl Manzoor2, Li Huang2, Dominik Krupke1, Arne Schmidt1,
Sándor P. Fekete1, and Aaron T. Becker2

Abstract— This paper studies the general problem of phys-
ically sorting polyominoes according to shape using a 2D,
rigid, grid-based workspace. The workspace is designed for
sensorless operation, using a fixed set of open-loop force-field
inputs that move a polyomino from an inlet port to an outlet
port that corresponds to the polyomino’s shape, and reset the
workspace to classify the next polyomino. This paper proves
that static workspaces can classify all orthoconvex polyominoes
of width w and height h, and provides a motion sequence
and required size of workspace as a function of w and h.
By allowing moving polyomino cams that assist in the sorting,
we can design dynamic workspaces that can sort all polyomi-
noes that are “completely filled” using a constant number of
force-field inputs. Hardware experiments using magnetic and
gravity-based actuation demonstrate these static and dynamic
sensorless classifiers at the millimeter scale.

I. INTRODUCTION
While macro-scale assembly typically involves precision

manipulators and many actuators, assembly at small scales
often relies on self-assembly and the influence of global
external conditions, such as the temperature of a vessel, the
addition of a catalyst, or turning on a magnetic field.

Inspired by this paradigm, we have investigated techniques
that generate multiple copies of desired polyominoes using a
series of actuations that move every tile in the workspace in
the same direction until halted by an obstacle. A polyomino
is a 2D structure composed of square tiles joined along
edges. Recent experimental work by Manzoor et al. [1]
demonstrated this actuation with 300 µm alginate particles,
using external magnetic fields to sequentially attach particles
to an existing subassembly. Becker et al. [2] showed that the
decision problem of whether a simple polyomino can be built
or not is solvable in polynomial time. However, errors can
occur during the assembly process. Because the assembly
sequence is performed in open-loop, these errors propagate,
even to the point of plugging the workspace and disabling
further construction.

To address this challenge this paper studies the general
problem of physically sorting a polyomino according to
shape using open-loop actuation, as illustrated in Fig. 1.

II. RELATED WORK
Error detection and shape recognition is a fundamental

need at many size scales in biology, from error detection

1Department of Computer Science, TU Braunschweig, Germany.
{p.keldenich, d.krupke, arne.schmidt, s.fekete}@tu-bs.de

2Department of Electrical and Computer Engineering, University of
Houston, USA. {smanzoor2, lhuang28, atbecker}@uh.edu. Work from
these authors was partially supported by National Science Foundation IIS-
1553063 and IIS-1619278.

Fig. 1. A 2D workspace with a moving cam that sorts polyominoes based
on shape in six moves. A 3×2 polyomino missing the rightmost tile from
the middle row exits at the right (red), while a 3×2 polyomino missing the
rightmost and middle tile from the middle row exits at the top left (red).
See video attachment or https://youtu.be/ZeBur5F7sIo.

in DNA strands to how antibodies bind to a specific shape
of antigen. Many research efforts have been dedicated to
developing shape detection and classification methods for
cells since these methods have an important role in im-
proving disease diagnosis processes and in devising better
treatment strategies. There are many challenges in addressing
fatal health conditions, e.g. sickle cell disease, because
the malfunctioning cells have complex and heterogeneous
shapes. They overlap and have indistinguishable structural
features in the diagnosis images. In [3], the authors presented
a convolutional neural network based approach to classify red
blood cells in sickle cell anemia patients.

Similar skills are used for industrial processes that sort and
grade grains and mineral particles. While these traditionally
use sieves of various sizes and blowing air, machine vision
is being increasingly used. For grading agricultural products,
the drawbacks of manual systems include time consump-
tion, variable labor availability, and inconsistency in grade
judgement. To overcome these drawbacks, there exist many
research works which aim at developing accurate and high
speed, automatic sorting and grading systems. Most of these
systems rely on machine vision, e.g. [4].

In contrast to systems requiring machine vision, this paper
uses an open-loop process that requires no sensor feedback
to sort shapes, and thus may be suitable for tiny enclosed
environments. Sensorless manipulation has a rich history
in robotics. Peshkin introduced a framework for designing
stationary fences along a conveyor belt to align objects [5].
Goemans et al. [6] extended this to filter 3D parts by shape
and orientation. Early work by Akella et al. demonstrated

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 4901

using a single-joint robot arm mounted above a moving con-
veyor belt to position and orient planar parts [7]. Recent work
by Zhang et al. [8] uses the same model of global controls
and grid-based obstacles as this paper, and shows there exists
a workspace a constant factor larger than the number of
agents that enables efficient, arbitrary rearrangement for a
rectangle of agents.

Another way to filter, sort, or orient parts without sensors
is by using vibrating surfaces. Böhringer et al. [9] presented
efficient algorithms that compute sequences of force fields
that position and orient parts in a predictable way. Beretty et
al. [10] and Agarwal et al. [11] provided efficient algorithms
to design traps that can be used to orient and sort parts in
vibratory bowl feeders. This differs from our work, which
focuses on accurately differentiating the detailed aspects of
the shape of objects, rather than their orientation.

III. MODEL

This paper analyzes two problems: sorting and error
detection. In both problems, we are constructing a workspace
that is represented as polyomino with holes. The exterior
of this workspace consists of rigid (immovable) obstacles.
The interior of a workspace contains one or more mobile
polyominoes that can be moved in one of the directions d ∈
{�, �,�,�} using global controls. A control d concurrently
moves all mobile objects in the specified direction until they
become blocked. A mobile object is blocked if it is adjacent
to a rigid obstacle or another blocked polyomino in the
direction of motion. Friction does not influence the behavior
of our mobile objects and the objects do not change their
orientation.

In the sorting problem, we are given a family F of input
polyominoes; we know in advance that only polyominoes
from this family need to be considered. The goal is to
compute a workspace W and a global control sequence
σ ∈ {�, �,�,�}∗ that distinguishes the objects of F from
each other in the following sense. The workspace W must
contain a designated input region where a polyomino from
F enters the workspace, and one output region for each
polyomino P ∈ F . These regions must be pairwise non-
intersecting. Applying σ to the workspace must move any
polyomino P ∈ F from the input region to its corresponding
output region without entering any other output region in the
process.

In the error detection problem, we are given a polyomino
P . The goal is to compute a workspace W and a global con-
trol sequence σ that determines whether the input polyomino
is correct, i.e., equal to P , or incorrect. We assume that in-
correct polyominoes are not wider or higher than P ; filtering
polyominoes by height and width is straightforward. Similar
to the situation for the sorting problem, the workspace W
must contain a designated input region where a polyomino is
placed, as well as accepting and rejecting output regions for
correct and incorrect polyominoes. If P is placed in the input
region, it must be moved to an accepting output region; other
polyominoes must be moved to a rejecting output region. A
general limitation of our approach is that we cannot detect

Fig. 2. Two polyominoes with a (vertical) dent of depth 1 (left)
and 2 (middle). Static workspaces cannot distinguish these polyominoes.
Introducing a difference between the top-left corners of the polyominoes can
only be done by moving the polyominoes downwards onto a rigid obstacle
(right). However, the only move that can be done after such a downward
move is an upward move, leaving both polyominoes in the same position.

holes in polyominoes; therefore, we do not consider errors
where an object that should be solid has a hole. Depending on
the situation, we want to optimize the constructed workspace
according to the criteria sorting speed, i.e., length of the
sorting sequence, and workspace size, i.e., the dimensions of
the workspace.

IV. STATIC WORKSPACES

In this section, we consider static workspaces that consist
only of rigid obstacles. The only mobile object in a static
workspace is the input polyomino that is currently being
sorted. On the positive side, static workspaces are relatively
simple and robust. However, there are limits to what kind
of polyominoes can be sorted using static workspaces. For
instance, it is impossible to measure the depth of a dent; see
Fig. 2.

Definition 1. A dent of depth d in a polyomino P is a column
or row of d > 0 consecutive tiles not belonging to P , where
the first tile is adjacent to exactly three tiles of P and all
remaining tiles are adjacent to exactly two tiles of P .

An important family of polyominoes that do not have dents
are orthoconvex polyominoes. For these polyominoes, we
can show that static workspaces suffice for sorting and error
detection.

Theorem 1. Families F of orthoconvex polyominoes of
width w and height h can be sorted with a sorting sequence
of length O(min(|F|, w + h)) and a static workspace with
dimensions O(|F| · wh) × O(|F| · wh). For orthoconvex
polyominoes, error detection can be done with a static
workspace with dimensions O(w(w + h)) × O(h(w + h))
and sequences of length O(w + h).

Proof. The proof is based on the following ideas. We can
subdivide the boundary of any orthoconvex polyomino into
four monotonic and four constant pieces as depicted in Fig. 3.
We can use a gadget such as depicted in Fig. 4 to classify a
polyomino based on the positions of the transition between
monotonic and constant pieces. To classify polyominoes for
which these positions are identical, we can test each row
and column of the monotonic pieces individually; this can be
done in constantly many steps per row and column. For error
detection, we must also check that the polyomino is actually
orthoconvex; this can be done by checking each individual
row and column in total time O(w+h) and space O(w(w+
h))×O(h(w + h)).

4902

constant

constant

constant
constant

monotonic

monotonicmonotonic

monotonic

Fig. 3. Decomposition of the boundary of an orthoconvex polyomino.

Fig. 4. Applying the control sequence ����� classifies a polyomino based
on the row of the top end of the rightmost constant piece of the boundary.

Moreover we can show that we cannot hope to sort or-
thoconvex polyominoes with fewer than Ω(min(w+h, |F|))
moves in static workspaces. In other words, static workspaces
cannot sort orthoconvex polyominoes in sublinear time.
Thus, the sequence length required by the technique de-
scribed in Theorem 1 is asymptotically optimal in the worst
case.

Theorem 2. For every n ∈ N, there is a family Gn of n
orthoconvex polyominoes of size O(n) × O(n) for which
sorting requires Ω(n) moves in any static workspace.

Proof. The family Gn can be constructed as follows; see
Fig. 5 for an example. Starting with a staircase polyomino
of width n + 2, each family member Gi ∈ Gn, 2 ≤ i ≤
n + 1 is constructed by removing the ith tile from the
diagonal of the staircase. Because the top and left side of
all polyominoes in Gn are identical, only right and down
moves can differentiate between the polyominoes. Let W
be a workspace and σ = σ1σ2 . . . be a control sequence
sorting Gn. We consider applying σ to n copies Wi of W in
parallel; to obtain Wi, we place Gi in W ’s input region.
Let (xi

j , y
i
j) be the position of the top-left corner of Gi

Fig. 5. A family of orthoconvex polyominoes that require linear time to
sort in static workspaces can be created by removing single tiles from a
staircase polyomino (left).

0 1 2 3 1 0di =

Fig. 6. A completely filled polyomino, its lower, upper, left and right
envelope (bold), the corresponding base lines (dotted) and the distance
between lower base line and lower envelope.

in Wi after applying the first j steps of σ. Let Sj be the
size of the largest set Hj ⊆ Gn of objects Gi for which
(xi

j , y
i
j) are equal. Because the initial position of all objects is

identical, we have S0 = n. We prove that |σ| ≥ n by proving
Sj+1 ≥ Sj − 1, i.e., in one step, we can only differentiate
one element from the others. If σj+1 ∈ {�,�}, Sj+1 ≥ Sj .
If σj+1 = �, at most one object can be differentiated from
the others by becoming blocked one unit later than the others
by an obstacle in the column where it has no diagonal tile.
Placing such an obstacle in more than one column results in
all objects being blocked at the same position. The situation
is analogous for σj+1 = �.

We also consider the following more general class of
polyominoes.

Definition 2. A polyomino is called completely filled iff
it consists of all tiles that are below its upper envelope,
above its lower envelope, right of its left envelope and left
of its right envelope. The lower base line of a completely
filled polyomino is the horizontal line through its lowest
points; see Fig. 6. Upper, left and right base lines are defined
analogously.

Because completely filled polyominoes can have dents,
static workspaces are not sufficient to sort or error detect
every family of completely filled polyominoes. However, we
can prove the following result that allows us to efficiently
decide whether sorting and error detection can be done using
static workspaces for a given completely filled polyomino.

Theorem 3. A family F of completely filled polyominoes can
be sorted with static workspaces iff no pair of polyominoes
in F differs only by the depth of dents. Error detection
using static workspaces can be done for any completely filled
polyomino P iff P does not have a dent for which an error
can change the depth.

Proof. In the following, we argue that for polyominoes P
without dents whose depth can be changed by an error,
static workspaces suffice for error detection. The statement
regarding sorting can be shown in a similar manner. Error
detection for P can be done as follows. First we check that
the positions where the distance between the baseline and P
is zero are correct on all four sides of the given polyomino.
This is possible by repeatedly using a construction similar to
the one in Fig. 4. This allows us to use a construction such

4903

Error

Fig. 7. A gadget that checks the distance between the lower envelope
and the polyomino in a certain column. Applying the control sequence
������� moves the polyomino to the left exit iff the two gray tiles
are empty and the orange tile is present. The height of the window on the
left side of the corridor (green tiles) corresponds to the distance between
the topmost and the bottommost point where the left envelope touches the
left baseline.

as depicted in Fig. 7 to verify the distance between envelope
and baseline in some row or column. Note that this step can
detect the presence, but not the depth of dents. As a last step,
we have to check the boundary for missing tiles. This can
be done in a straightforward manner, using constantly many
control moves for each tile on the boundary of P .

V. DYNAMIC WORKSPACES

In this section, we consider dynamic workspaces that are
composed of rigid obstacles and moving cams. Cams are
affected by the global controls in the same manner that input
polyominoes are. However, they must not enter the input
region or any output region. Moreover, we require the sorting
or error reporting process to be repeatable; i.e., applying our
control sequence must return the workspace to a state that
can be used to sort the next incoming polyomino. Dynamic
workspaces are considerably more powerful than static ones
with respect to sortable objects, workspace size, and sorting
speed.

Theorem 4. Dynamic workspaces can sort any family F of
polyominoes of width up to w and height up to h that are
completely filled with a sorting sequence of constant length
and a workspace of dimensions O(|F| ·wh)×O(|F| ·wh).

Proof. In the following, we describe how to construct a
workspace that sorts a given family F of completely filled
polyominoes with a control sequence of constant length. You
can get an intuition of the construction using our interactive
visualization applet1. In a first step, our procedure groups the
polyominoes from F according to their height and width; we
handle each group separately. Therefore we assume in the
following that all polyominoes have the same width w and
height h. Our sorting procedure checks the left, right, lower
and upper envelope separately. For each envelope, constantly

1https://roboticswarmcontrol.github.io/
TiltSorting/index.html

many operations are required; therefore, the entire procedure
only requires constantly many operations. The main idea of
sorting the right envelope is as follows; the construction for
the other envelopes is analogous. We use a set of pins, one
for each row of the polyomino. To sort a polyomino, the
pins are pushed against the polyomino from the right. The
pins consist of several stages, each stage corresponding to a
certain envelope to be tested for. If the envelope matches, a
set of interlocking cams called the plug unlocks and can be
moved to the top, thereby extending a barrier that we then
use to move the polyomino to the right position. Refer to
Fig. 8 for an example of the construction.

In the following, we describe the construction in more
detail. Firstly, our construction requires a distance of three
between successive rows; therefore, as a first technical step,
we use one expansion cam per row as depicted in Fig. 8
to introduce additional vertical space. These cams can move
left and right independently of each other; therefore, they
copy the right envelope of the polyomino they are pushed up
against. This requires O(wh) space, because there must be
a horizontal distance of at least w between the vertical parts
of each expansion cam to allow them to move horizontally
without influencing each other. To the right of the expansion
cams, there is one stage for each right envelope E in F . At
the left end of each stage, there is a horizontal driver cam for
each row of the polyomino. Let dj be the distance between
the right envelope and base line in row j, and let d′j be the
distance between right envelope and base line in row j in
the previous stage, or 0 for the first stage. Note that due to
the polyomino having width w, for at least one j we have
dj = 0. The driver in row j has width 3w + dj − d′j . When
we push all rows left against the polyomino, this ensures
that the ends of all drivers are at the same width iff its right
envelope is E. We prevent any vertical motion of the drivers
using rigid obstacles placed between the stages. Right of the
drivers of each stage we place the plug of the stage. The
plug consists of one interlocking cam of height 3 for each
row; see Fig. 9 for its dimensions. The parts of each plug
can move horizontally according to the right envelope of the
polyomino without blocking each other. However, if one of
the cams is blocked w.r.t. motion to the top, it blocks all other
cams. Let y>, y⊥ be the leftmost and rightmost column of
the plug if the polyomino has right envelope E. On the upper
side of each stage, there is a horizontal wall of rigid obstacles
with a window from y⊥ to y>. On the bottom of each stage,
we add a horizontal wall of rigid obstacles with windows of
width one at y⊥ and y> and two vertical barriers extending
through these windows. The barriers are long vertical cams
that are fixed at their bottom end as depicted in Fig. 8 and
cannot move horizontally; they can only move to the top if
the interlocking cams are all at the same, correct width for
the current stage, i.e., if the polyomino has right envelope E.
In this case, the plug can move to the top into a pocket that
prevents any motion other than to the bottom. The barriers
move to the top with the plug, blocking a corridor that the
polyomino travels through; their bottom end stays below the
bottom wall of the stages, ensuring that the construction can

4904

input

out 1 out 2 errors

Stage 1 Stage 2

up
pe

r
ba

rr
ie

r

lo
w

er
 b

ar
ri

er

up
pe

r
ba

rr
ie

r

lo
w

er
 b

ar
ri

er

Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6

Plug 1 Plug 2

bottom drivers

sh
ea

r
lin

e

sh
ea

r
lin

e

dr
iv

er
s

1

dr
iv

er
s

2

springs

ex
pa

ns
io

n
ca

m

pocket pocket

Fig. 8. Example of our construction that classifies polyominoes based on their right envelope. Using the control sequence ������� moves the red
polyomino P (bottom left) out of an exit at the top depending on its right envelope. Afterwards, the sequence ���� resets the cams in the workspace to
their initial state. The right envelope of P matches the second stage and is moved to the corresponding exit (top center); the first stage is matched by a
6× 3-rectangle, matching polyominoes leave through the first exit (top left). Any polyominoes with other envelopes leave through the last exit (top right).
See https://roboticswarmcontrol.github.io/TiltSorting/index.html for an interactive visualization applet.

︸ ︷︷ ︸

2w︸︷︷︸ 2w ︸︷︷︸

2w

︸︷︷︸1

︸ ︷︷ ︸
4w + 2

︸︷︷︸1

︸︷︷︸ 8w + 4

Fig. 9. Dimensions of interlocking cams used in our construction; each
stage contains one of these cams for each row of the polyomino.

be reset by a downward move. Right of the last stage, there
is one more group of drivers that are held in place by narrow
horizontal pockets; see Fig. 8.

Theorem 5. For any completely filled polyomino P , errors
that change any of the four envelopes can be detected
in constant time; thus, for orthoconvex polyominoes, error

detection can be done in constant time. Checking for other
errors can be done in time linear in the perimeter of P , which
is in O(wh); this is asymptotically optimal in the worst case.

Proof. To perform error checking for a given completely
filled polyomino, we have to make sure that there are no
missing tiles along the boundary of the polyomino. The
envelope of a completely filled polyomino can be error-
checked in constant time, analogous to the construction in the
sorting case. In the following, we prove that error-checking
the remainder of the boundary requires Ω(wh) moves in the
worst case. To prove this, we consider comb polyominoes
with Ω(w) teeth of width five separated by gaps of width
one; see Fig. 10. Consider a tile that is part of the right
boundary of a tooth and at least three units away from the
upper and lower end of the tooth. To verify that this tile is

4905

Fig. 10. A comb with 2 teeth of width 5 (left) and an erroneous polyomino
(right) containing a trap (light gray). To check for missing tiles in o(wh)
moves, a cam would have to be moved into the trap by a � control. If the
next control is not � (in which case the error is not detected), but either
� or �, the cam is trapped. Once a cam is trapped in the polyomino, no
control sequence can transfer the workspace into a state without trapped
cams.

Coils

CameraLED drive

Coils

(a) (b)

Workspace

5 cm
2 mm

Inlet

1x1

2x1
1x2

3x1
1x3

‘L’

10 mm

Fig. 11. (left) Magnetic manipulation system used to demonstrate poly-
omino sorting and error detection. (right) 77 mm × 56 mm workspace used
to sort all polyominoes with 1, 2, or 3 tiles.

present in the given polyomino P , at some point, there must
be a probe of size 1×1 to the right of this tile. This probe can
either be a rigid obstacle or a cam; if it is a rigid obstacle,
for some point in time where the probe is present, there must
not be any other obstacle restricting the movement of P to
the right. In particular, we can only check one tile on the
right boundary of a tooth at each point in time. Therefore to
use o(wh) moves to error-check P , we have to use a cam for
at least one tile on the right boundary of a tooth. However, it
is impossible to do this in general, because there are errors
that can trap any cam of size 1× 1; see Fig. 10.

VI. EXPERIMENTAL DEMONSTRATION

We demonstrated tilt sorting and error detection at the
milli-scale using a customized setup that generates a uniform
magnetic field to keep the parts aligned in the commanded
direction and gravity is used to manipulate the parts.

a) Experimental Platform: The customized electro-
magnetic system in Fig. 11 has two pairs of coils (18
AWG, 1200 turns, Custom Coils, Inc) arranged orthogonally
and powered by four SyRen10-25 motor drivers. Tekpower
HY3020E is used as DC power supply. The system can gen-
erate up to 101 Gauss uniform fields on the horizontal plane
of the workspace center. The coil current was controlled
using an Arduino Mega 2560.

N S N S N S

N S

N S

N SN S

N S
N

N S

N S

N S

N S

(b)(a)

Fig. 12. (a) Schematic of the eight polyominoes used to demonstrate
sorting and their alignment in a uniform magnetic field. (b) Schematic of
two polyominoes fabricated for error detection.

Each workspace used to demonstrate tilt sorting and
error detection was designed in AutoCAD and then cut
using a Universal Laser Cutter. Two layers of transparent
acrylic were glued together (Gorilla Super Glue) to make
a workspace. One layer of 2.0 mm thickness was used
as the base and another 5.5 mm thick layer made the
obstacle boundary. To perform an experiment, the workspace
was placed in the center of the magnetic platform and
observed with an IEEE 1394 camera, captured at 60 fps.
The polyominoes used for the experiments were fabricated
from nickel-plated neodymium cube-shaped magnets (super-
magnetman.com C0010 and C0030).

b) Static Workspace Experiments: To show sorting for
static workspaces, we designed two workspaces at two scales.
The first system used a workspace of 77 mm width and 56
mm length and sorted polyominoes composed of 3.0 mm3

neodymium cube magnets. The second, smaller system used
a workspace of 44 mm width and 35 mm length and sorted
polyominoes made of 1.0 mm3 neodymium cube magnets.
An approximate uniform field of 30 Gauss was employed to
keep the polyominoes aligned, and the workspace was tilted
in the direction sequence {�,�, �,�}. The direction inputs
were applied until the polyomino touched a layout wall.
Fig. 12(a) shows the eight polyominoes which were sorted
in these experiments. To make a polyomino, one magnetic
cube was attached to one or more cubes that had been
demagnetized using a blow torch. Fig. 13 shows the four
different polyomino shapes in their respective bins inside the
workspace and the results after applying control sequence for
sorting three polyominoes.

c) Dynamic Workspace Experiments: This experiment
used a 59 mm × 52 mm workspace. A cross-shaped moving
cam was used to detect the inner shape of two polyominoes.
One polyomino had a dent one-tile deep while the other had
a dent two-tiles deep. The cam and the workspace in Fig. 14
are designed so that the polyomino with a one-tile dent is
stored in a bin and the other polyomino is rejected. The
direction sequence for the parts and the cam is {�,�, �,�}.
Each of the two polyominoes contains two magnetic cubes,
one in the top row and the other in the bottom, attached
to the demagnetized cubes as shown in Fig. 12(b). Fig. 14
shows the polyomino with a one-tile dent inside an output
region and the other polyomino exiting the workspace after
applying the control input sequence {�,�, �,�}. See video
attachment for experimental demonstrations.

VII. CONCLUSIONS

In this work, we presented algorithms to construct
workspaces that are able to sort polyominoes based on
their shape. Among others, the following open questions
remain. Is it NP-hard to decide whether we can sort a given
family of polyominoes using static or dynamic workspaces
or is there an efficient algorithm? Are there any simple
polyominoes which cannot be error-checked or sorted by
dynamic workspaces? How hard is it to find a shortest
possible sorting sequence or a smallest possible workspace?

4906

start

in
le

t
5 mm

2x1

1x1

3x1

‘L’

Fig. 13. Frames from video demonstration of sorting polyominoes using
the static workspace for 1 mm tiles. See attachment for larger images and
video or at https://youtu.be/ZeBur5F7sIo.

If we are able to scale down the size of the tiles for
rigid obstacles and cams by a constant factor, we can sort
larger classes of polyominoes in a more efficient manner. For
instance, static workspaces can measure the depth of dents if
the obstacles are a factor of two smaller than the polyomino.
In general, how does scaling down the size of the obstacles
influence what we can sort and the length of an optimal
sorting sequence?

In our model, we put a single polyomino into our
workspace and apply the complete sorting sequence before
putting the next polyomino in. To increase throughput we
could introduce pipelining in the sense that after a certain
initial part of the sorting sequence, the next polyomino could
be introduced into the workspace. How much throughput can
we gain by this, in particular for static workspaces? It may
also be feasible to use other polyominoes instead of cams in
an otherwise static workspace.

Currently, we only apply a force in one of four directions
at the same time. What changes if we were allowed to
apply forces in two perpendicular directions at the same
time? Our hardware setups used magnetic fields to align
the polyominoes and gravity for actuation. As Salmanipour
and Diller exploit in [12], the magnetic fields generated by
electromagnetic coils are relatively uniform across micro-

in
le

t 10 mm

start

cam

Fig. 14. (Top) A dynamic workspace with one sliding cam, designed for
error detection using the sequence {�,�, �,�}. Only 3×3 polyominoes
with a one-tile dent on the right side, as in Fig. 2, are delivered to the right
output region. (Bottom) Results for error detection with two polyomino
shapes, a two-tile dent (top) and a one-tile dent (bottom). See attachment
for larger images and video or at https://youtu.be/ZeBur5F7sIo.

particles, so for sufficiently tiny workspaces the magnet
orientation and gradient are approximately uniform. This
means the magnetic forces and torques are approximately
equal across a sufficiently small workspace. Future work
should explore magnetic-based sorting at smaller size scales.

REFERENCES

[1] Sheryl Manzoor, Samuel Sheckman, Jarrett Lonsford, Hoyeon Kim,
Min Jun Kim, and Aaron T. Becker. Parallel self-assembly of poly-
ominoes under uniform control inputs. IEEE Robotics and Automation
Letters, 2(4):2040–2047, 2017.

[2] Aaron T Becker, Sándor P Fekete, Phillip Keldenich, Dominik Krupke,
Christian Rieck, Christian Scheffer, and Arne Schmidt. Tilt Assembly:
Algorithms for Micro-Factories that Build Objects with Uniform
External Forces. In The 28th International Symposium on Algorithms
and Computation (ISAAC), 2017. To appear.

[3] Mengjia Xu, Dimitrios P Papageorgiou, Sabia Z Abidi, Ming Dao,
Hong Zhao, and George Em Karniadakis. A deep convolutional neural
network for classification of red blood cells in sickle cell anemia. PLoS
Computational Biology, 13(10):e1005746, 2017.

[4] D. J. Lee, J. K. Archibald, and G. Xiong. Rapid color grading for fruit
quality evaluation using direct color mapping. IEEE Transactions on
Automation Science and Engineering, 8(2):292–302, April 2011.

[5] Michael A Peshkin and Arthur C Sanderson. Planning robotic
manipulation strategies for workpieces that slide. IEEE Journal on
Robotics and Automation, 4(5):524–531, 1988.

[6] Onno C. Goemans, Ken Goldberg, and A. Frank Van Der Stappen.
Blades: A new class of geometric primitives for feeding 3D parts on
vibratory tracks. Proceedings - IEEE International Conference on
Robotics and Automation, 2006(May):1730–1736, 2006.

[7] Srinivas Akella, W Huang, Kevin M Lynch, and Matthew T Mason.
Sensorless parts feeding with a one joint robot. Algorithms for Robotic
Motion and Manipulation, pages 229–237, 1996.

[8] Y. Zhang, X. Chen, H. Qi, and D. Balkcom. Rearranging agents in
a small space using global controls. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3576–
3582, Sept 2017.

[9] K.-F. Böhringer, V. Bhatt, B. R. Donald, and K. Goldberg. Algorithms
for sensorless manipulation using a vibrating surface. Algorithmica,
26(3):389–429, Apr 2000.

[10] Robert-Paul Berretty, Ken Goldberg, Mark H Overmars, and A Frank
van der Stappen. Trap design for vibratory bowl feeders. The
International Journal of Robotics Research, 20(11):891–908, 2001.

[11] Pankaj K Agarwal, Anne D Collins, and John L. Harer. Minimal
trap design. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2243–2248, 2001.

[12] Sajad Salmanipour and Eric Diller. Eight-degrees-of-freedom remote
actuation of small magnetic mechanisms. In IEEE International
Conference on Robotics and Automation, 2018.

4907

